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Abstract

The model proposed in the first part of this series for characterizing the thermomechanical response of natural
rubber during crystallization is used in this article to model the elementary thermodynamic properties of natural
rubber. In particular, known experimental results for the heat capacity, heat of fusion, fundamental melting
temperature, and equilibrium crystallinity are used to calculate specific material functions associated with the
proposed model. Based on these material parameters the model is used to evaluate the dependence of equilibrium
crystallinity on pressure and temperature. The dependence of the melting temperature on pressure is also
evaluated. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the first part of this series (Negahban, 2000), the general theoretical structure was laid out for
modeling the thermomechanical effects of crystallization in natural rubber. In this part, the elementary
thermodynamic parameters are related to the model parameters and evaluated for natural rubber based
on existing experimental results. The elementary thermodynamics parameters refer to quantities such as
heat capacity, heat of crystallization, melting temperature, and equilibrium crystallinity. The term
‘elementary’ in describing the thermodynamic parameters will refer to the assumption that the
parameters are evaluated under hydrostatic pressure and that only pure volumetric changes (equal
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Nomenclature

a Rate of crystallization in mass per unit time

b Mass fraction of amorphous material (= 1 — L’ a(s)ds)

boo Equilibrium mass fraction of amorphous material

B Left Cauchy stretch tensor (=FF7)

p Heat capacity per unit mass at constant pressure

Cy Heat capacity per unit mass at constant volume

c; Heat capacity per unit mass of the liquid (amorphous) polymer

Cy Heat capacity per unit mass of the solid (fully crystallized) polymer

e Internal energy per unit mass

F(¢) Deformation gradient at current time ¢

F,(¢) Relative deformation gradient comparing the configuration at time ¢ to the configuration
at time s

F(t) =55 F0

Fi() = 709K,0)

h Heat content per unit mass

ha Heat content per unit mass of the amorphous polymer

he Heat content per unit mass of the fully crystalline polymer

Ahy, Heat of fusion per unit mass at the melting temperature

H Heat content

J Volume ratio (= det[F])

Ja Volume ratio of the amorphous polymer

Jc Volume ratio of the fully crystalline polymer

L Velocity gradient (= F(1)F~'(2))

p Indeterminate scalar associated with incompressibility

t Current time

t Starting time of crystallization

T Cauchy stress tensor (true stress)

n Entropy per unit mass

0 Temperature

Om Melting temperature

00 Mass density in reference configuration

0 Mass density

oA Mass density of the amorphous polymer

Poc Mass density of the fully crystalline polymer

Oave Average principal Cauchy (true) stress (=1/3 tr(T))

V] Free energy per unit mass

Ya(t)  Effective free energy of the amorphous part

Yc(t, s) Effective free energy at the current time of the crystals (or parts of crystals) formed at
time ‘s’

‘04 Partial derivative with respect to ‘4’

[

Material time derivative of overlined quantity
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triaxial extensions) occur during the crystallization process. This will be in contrast to, for example, the
heat capacity during crystallization under stretch, which will be studied in a following article.

As described in the first part of this series, a general constitutive equation for the description of the
thermomechanical effects of crystallization in polymers was developed in Negahban (1997). This general
formulation was based on an expression for the current free energy, ¥ (¢), of the form

W) = DO A +J Velt, s)a(s)ds, (1)

where b(t) is the current mass fraction of amorphous material, a(s) is the rate of crystallization at time
s, ts 1s the time crystallization starts, 7 is the current time, Y 5(¢) is the effective free energy per unit mass
in the amorphous fraction, and (¢, s) is the effective current free energy per unit mass in the crystal
created at time s. The relation between the fraction of amorphous material and the rate of
crystallization is given by

t

b(H)y=1-— J a(s)ds. (2)

ts

For the purposes of modeling the behavior of natural rubber, the general expressions for the effective
free energies of the two phases are selected as

2 .
Yal) =Y Ai(I7 - 3) 3
i=0
and
2 .
Vet )= > Ci(I5-3)" 4)
i=0

In these relations, the coefficients are functions described as
Ai[b(1), 0()], Ci[b(2), 0(2),b(s), O(s)], 5)

where 0 denotes temperature. The invariants /7 and I} are given in terms of the traditional invariants
by extracting volumetric changes. These relations are given by

1 J23(s)

"=t R

Iy, (6)
where J = det[F] is the volume ratio, ‘s’ denotes time s and ‘¢’ denotes the current time ¢. The invariant
I, =tr[B(t)] and I,=tr[B,(¢)], where B()=F(z)F’(t) and By(r) = Fs(t)FXT(t). F(¢) denotes the deformation
gradient comparing the current configuration to the reference configuration, and Fy(¢) denotes the
deformation gradient comparing the current configuration to the configuration at time s.

The result of the development presented in the first part were expressions for Cauchy stress, T,
entropy, #, and thermodynamic force of crystallization, &, given, respectively, as
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T = 00e (DL + 2p(0b(0)[ A1 + 245 (I — 3)] |:B*(t) i I] + 2p(t)Jt [Ci+2C5(15 - 3)]

[B*(t) — [—* }a(s)ds (7

~ 04; i [ 3G, i
o) = ~b0 Y (=3 ) J = 3) atas—
=0 15

i=0

b(1) dpa — b(1) dpc
[ 20O de(’)]’ ®
and
2 ) 2t
&) = ;:A,‘(l1 ~3)'-Cy S:,H)(Z) Z ab() +; Jl 8b([) — 3 a(s)ds—
1 1
S oRdl! ®

where a,,. 1S the average principal stress (negative of the hydrostatic pressure), I is the second order
tensor identity, p(z) is the current value of density, pa and pc are, respectively, the density of the
amorphous and crystalline phases as a function of temperature.

Before we proceed, we must make explicit how we extract the thermodynamic parameters from the
continuum theory. This will be done in several steps. In Section 2, we define heat flow and heat content.
In Section 3, we define heat capacity, heat capacity at constant pressure, heat capacity at constant
volume, heat capacity at constant pressure and crystallinity. In Section 4, we define the heat of
crystallization and heat of fusion and, in Section 5, we define the melting temperature and equilibrium
crystallinity.

The next stage is to define the elementary thermodynamic parameters. We consider the elementary
heat capacities and heat of fusion to describe the response of the rubber under hydrostatic pressure,
which is assumed to be accompanied by deformations which are described by equal triaxial extensions.
The form of these parameters are calculated based on this assumption in Section 6, and each variable is
fit to the known experimental results in Section 7.

Finally, in Section 8, the thermodynamic force of crystallization is used to impose the fundamental
melting temperature, and the extent of crystallinity as a function of temperature, under conditions
consistent with those assumed to exist for the evaluation of the elementary thermodynamic parameters.

Using the material parameters evaluated, the dependence of heat content and equilibrium crystallinity
on temperature and pressure are described. In addition, the dependence of the melting temperature on
pressure is evaluated and shown to be about a 9°C increase in melting temperature for every 50 MPa of
hydrostatic pressure.

2. Heat flow under homogeneous conditions

Of particular concern in studying thermomechanical response is the connection between heat flow and
mechanical loading. By developing a general continuum thermodynamic model for the phase transition
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r r
Thermal Body Mechanical Body

Fig. 1. The thermomechanical loading of a body.

of natural rubber, one has a natural way of evaluating both the mechanical and thermal response
directly from the same model. We will proceed to evaluate the heat flow, and as a result, the heat
capacities of the crystallizing polymer.

Let H denote the heat content of a material body (a control mass). The rate at which H is increasing
is given by the rate at which heat is being added to the body. As shown in Fig. 1, heat may be added to
a continuum body either by heat conduction through the boundaries or through radiation (or
generation). The rate at which the heat content of the body is increasing is given by

H:—J q-ndF—i—JprdQ, (10)
r Q

where Q is the domain of the body with boundary I', q is the heat flux, n is the unit normal to I, and r
is the heat generation or radiation. The balance of work and energy for the body requires that the rate
of change of internal plus kinetic energy be equal to the rate at which the forces do work on the body
and the rate at which heat is added to the body. This yields the relation

. D 1
H=— J p<e+v-v)d9 —J t(")~vdF—J pb - v dQ, (11)

where D/Dt denotes the material time derivative, e denotes the internal energy per unit mass, v denotes
velocity, t") denotes the traction vector on the surface with normal n, n denotes the unit normal vector
to the boundary surface I' and b denotes the body force per unit mass. Substituting into Eq. (11) using
the well-known relation

D[ I
Dr JQ p<e+ Ev-v)dQ:| = JQ p(é+v-v)dQ, (12)

the law of balance of linear momentum given by

D
D1

J PVdQ}:J t(“)dF—i—J pb dQ, (13)
Q r Q
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Cauchy’s relation t)=T"n and the divergence theorem, results in
H= J [pé — tr(TL)]dQ, (14)
Q

where L = FF ' is the velocity gradient.

Next, we restrict our attention to the homogeneous process. It is assumed that all the measured
quantities are to reflect the homogeneous response of the rubber. It can be shown that, after the
application of the conservation of mass, one obtains an expression for the rate of change of heat
content per unit mass, A, given by

f=e— L), (15)
0

Using the standard relation e=1 + 0y and the general expression for ¥ given in Negahban (1998), one
arrives at the general expression

h(t) = =E(n)a(t) + 0(N(1), (16)
where
! 1 |
£ = (D)= Velt. )+ DO a0+ | et atons = pto| = s . (1)

1= a()dgA(t) — b([)BO(I)¢A(Z) —a(t)doyPc(t, 1)

_ J Wa(s)ds —ﬁ(f)|:

ts

b@) dpa(t) 1—-b@)dpc(o}

p2(1) A0 P20 dO() (18)

b0 dpa® . 1= () dpelD)
A0 d00) T i a0 |

— p(1)

and ‘=" denotes a material time derivative with respect to the current time of the overlined quantity. For
example, for a typical function A of variables F(z), 0(¢) and b(¢), one will have

A= [3r ) ATF(0) + [30()ATO(0) — [35nAlal?). (19)

In the above expression, p is given by
2 * * 2 ! * *
P(t) = Oave(?) — gp(t)b(t)[Al +24,(I7 - 3)]11 + §p(t) [Cl +2C,(1; - 3)]14a(s)ds. (20)

N

One can also integrate Eq. (15) to obtain
1
h=y +nb— J; tr(TL)ds, (21)

where the constant of integration must be fit to capture the initial heat content.
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3. Heat capacity

Once the expression for the rate of change of heat content is obtained, as given in Eq. (16), one can
use the expressions given in Egs. (8) and (9) for entropy and the thermodynamic force of crystallization,
respectively, to evaluate the rate of change of heat content from the expression for the free energy, the
average principal stress, and the expressions for the densities of the two phases.

At least four heat capacities can be defined. First, the heat capacity at constant pressure, which
represents the heat needed to change the temperature one degree under constant pressure. This is not a
unique quantity since the heat needed to take the polymer through this temperature change is also
dependent on the amount of crystallization which occurs during this process. As a result, the heat
capacity at constant pressure is a rate dependent quantity. One can calculate the heat capacity per unit
mass at constant pressure, ¢, from the rate of change of heat content by the relation

h
cp = (5) s (22)

where the subscript ‘c,,.” refers to the fact that the quantity is calculated at a constant average principal
stress. The second heat capacity one can define is the heat capacity per unit mass at constant volume, c,.
Again, as in the case of the heat capacity at constant pressure, the heat capacity at constant volume is
equal to the heat required to increase the temperature of the polymer one degree, keeping the volume of
the polymer constant. In the proposed model an assumption is made that the density of each phase of
the polymer is only dependent on the temperature, and the macroscopic density is controlled by the
temperature and the extent of crystallinity. This relation requires that the volume must change in
accordance with the thermal expansion of the two phases if the crystallinity is kept constant. As a result,
one is forced to have a given change in the degree of crystallinity to accommodate the constancy of
volume as the temperature is changed. From Negahban (1998), we note that

. bdJ 1—-b)dJc |:
j=|Pb s P =D)dJc iy Fpo,  pog T, (23)
P4, 40 pc, 40 P 4, Pc,

Constancy of volume requires that J = 0, which therefore requires that the rate of crystallization be
given in terms of the rate of change of temperature by

pobdn  pol1 =)

do do .

=1 G 0. (24)
_OJA _ _OJC
P 4, Pc,

Substitution of this rate of crystallization into the expression for the rate of change of the heat
content results in an expression for the rate of change of heat content, which is a linear function of the
rate of change of temperature, and also a linear function of the average principal stress. Yet the rate of
crystallization is not independent of the average principal stress (see the expression for the
thermodynamic force of crystallization) and, as a result, it is theoretically possible to evaluate the
average principal stress needed to obtain the given rate of crystallization, assuming one has a model for
the rate of crystallization. Therefore, in principal, the rate of change of heat content will be a function
of the rate of change of temperature and one can potentially obtain the heat capacity per unit mass at
constant volume from the expression
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h
= (9) 2

after making the above replacements for the rate of crystallization and average principal stress. The
uniqueness of this heat capacity is, in part, dependent on the linearity of the relation between the rate of
crystallization and the average principal stress.

The last two heat capacities that need to be defined are heat capacities at constant crystallinity. In
real experiments crystallinity is an internal parameter and can not be directly controlled independent of
how the material reacts to changes of average principal stress, strain, and temperature. Yet it is
informative to know how the heat capacity is affected if one could hold crystallinity constant. One can
define ¢, as the heat capacity per unit mass at constant pressure and crystallinity, and one can define
¢y as the heat capacity per unit mass at constant volume and crystallinity. The two are given by

h
Cpc = (5) (26)
Oaves b

Cye = OO. (27)

and

The fact that c,. is infinite is a result of the fact that in the proposed model the volume must change
due to thermal expansion if the crystallinity is held constant. The infinite value of ¢, is the price that
must be paid to gain the many other simplifications resulting from the assumption of incompressibility
of each phase during isothermal processes.

4. Heat of crystallization or fusion

One can now define the isothermal heat of crystallization. Let this be denoted by (k.)y and defined as
heat flow per unit mass into the body per unit change in crystallization under isothermal conditions, so

that
dh h
(kc)9 = _(db)(,: <a>()' (28)

This can be obtained by setting 0 equal to zero in the equation for the rate of change of heat content
and division by a(t). One should note that not only the current degree of crystallization and
temperature, but also the conditions of loading contribute to this heat through the average principal
stress and the strain dependence of the free-energy. This heat of crystallization will continuously change
as the process of crystallization proceeds.

An alternate measure of the heat of crystallization is the difference in the heat content between the
heat content per unit mass in the fully crystalline phase, Ac, and the heat content per unit mass in the
fully amorphous phase, 25. The heat of crystallization, 44, will therefore be defined as

Ah = hc - hA. (29)
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5. Fundamental melting temperature and equilibrium crystallinity

In the context of the current theory, one can define a fundamental melting temperature. This
temperature represents the lowest temperature at which an unconstrained amorphous material will not
show a tendency to crystallize. The fundamental melting temperature will, therefore, be the temperature
for which zero average principal stress combined with equal triaxial extensions will give a
thermodynamic force of crystallization equal to zero for a fully amorphous material.

This same idea can also be used to describe a variety of different melting temperatures, each
characterized by different loading conditions. For example, a stretched amorphous material will have a
different temperature at which the thermodynamic force of crystallinity goes to zero, and will, therefore,
have a different melting temperature.

An alternate problem is to keep the temperature constant and to search for the degree of crystallinity
which makes the thermodynamic force of crystallization go to zero. This would define the equilibrium
degree of crystallinity. Since the thermodynamic force of crystallization is loading dependent, the
equilibrium crystallinity will be loading dependent. One can define, as was done above, a fundamental
equilibrium degree of crystallinity by defining a unique set of conditions to be used to arrive at this
quantity. Since the elementary thermodynamic quantities are evaluated under equal triaxial extension, a
fundamental equilibrium degree of crystallinity will be defined by the process of super cooling of an
amorphous material to a given temperature and then isothermal crystallization subject to equal triaxial
extensions and under zero average principal stress until the thermodynamic force of crystallization goes
to zero.

6. Imposing equal triaxial extension

As described in the introduction, the elementary thermodynamic parameters are assumed to describe
the response under homogeneous equal triaxial extension. Therefore, as the material is changing its
shape, either due to thermal expansion or crystallization, its deformation is described by the
deformation gradients

F(1) = J'"P(OL Fy(1) = j:j—jg . (30)
As a result, one will have the volume extracted deformation gradients

F'() =L F()=L (1)
Therefore,

B (=L B(») =1, (32)

which results in

" =3,1%=3. (33)

The velocity gradient can also be evaluated as
_ %1. (34)

Substitution of the above into Egs. (3) and (4) results in
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Ya() = Ao, Ye(t, 5) = Co (35)

and, as a result, one has the expression for free energy given by

t

W(1) = b(1) Ay + J Coa(s)ds. (36)

N

Substitution of the above kinematical assumptions into Eqs. (7)—(9) results in expressions for the
Cauchy stress, entropy and thermodynamic force of crystallization, respectively, given as

T(t) = oae(D], (37)
_ dAy B " aCy b(t) dpy — b(?) dpc
10 = b0 jott — | hatas o, [ B0+ dg(ﬁ (8)
and
o 940 (" 0GC A DR S O
ém—AocmH+MmWO+LaW¢@m %{%m p&ﬂ. (39)

The rate of change of entropy is given by

aCy

324, 324, .
(1) = a(Z)BQ(t) + ()|:80(t)8b(t) 0 = 329(1)0(1)} 000

|

392G, 92C, [ b dp, 1 — b(r) dpe
[WQ(Z) 320( )G(Z):| (S)dS — Oave pi(l‘)@(l‘) + p%([) @([)] _
L dongy IONCIVAS b(t)(dpc ) .
b(t) d?p, 1—b()d2pe, |
! [pi(t) deo? 0+ pi(1)  do? (Z)}e(”}‘ (40)

The heat capacity at constant pressure and crystallinity is evaluated from Eq. (26) by setting a(z)
equal to zero in the expression for the rate of change of heat content Eq. (16) and in the expression for
the rate of change of entropy Eq. (40). The result of this operation is

. 0@n 340 [ 3°Co b(1) (dPA ) —b(n)
Cpc = R 0(1){ b([)aez( ) LS 82@(0“@) - aave{ - 2|:pf\(l) () é([)

wc) b(1) d%p,, . 1=b(1)d2p
(()}LMMN”%mMNN} @)

The heat content can be directly evaluated from Eq. (21) after using the relation
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—tr[T(t)L(t)] _ gud) (42)
p(1) Po

which results after the substitution of Eqgs. (34) and (37) and the expression for the law of conservation
of mass given by p(t)J(t)=po. In general, under equal triaxial extensions and constant average principal
stress, the expression for the heat content is given by

GaveJ

h=vy +nb— + D, (43)
Po

where D is a constant of integration. For the fully amorphous material one has

81‘10 O ave dJA Oave
D 44
i~ 0| = e+ @)

hat) = Ao — 0( )[

where, for the fully amorphous material, po=Ja(t)pa(?). For a fully crystalline polymer (b = 0), one has
the heat content

1

he(t) = J Je(t) + D, (45)

N

C()Cl(S)dS 9([) |:J 806(;) ( )d __ Oave d-]c( )] Oave

Pc, Co

where use has been made of the relation J(0)p¢, = Jc(D)p 4, -

Considering an isothermal process under constant average principal stress which starts with an
amorphous polymer and ends with a fully crystalline polymer, one can obtain the isothermal heat of
crystallization as

! 94y 9y 1 dJa 1 dJc
Ah = - =—4 y ave -
h=hc—ha 0o+ L Coa(s)ds + 0|:80(t) L 8H(I)a(s)ds — 0o y 90 pe, A0

+ Oave |:JA Je :| . (46)

Po P,

7. Heat capacity and heat content of natural rubber

Van Krevelen and Hoftyzer (1976) provide expressions for heat capacity of the ‘liquid’, c;) and ‘solid’,
¢y, phases of polymers. These will be interpreted to represent, respectively, the heat capacity for the fully
amorphous and the fully crystalline phases of our natural rubber. Since either heat capacity is given for
a constant degree of crystallinity, the heat capacities provided by Van Krevelen and Hoftyzer will be
interpreted as equivalent to cp. as defined above, evaluated, respectively, for b = 1 and b = 0. The
average principal stress will be assumed to be equal to zero for the purposes of this comparison.

Van Krevelen and Hoftyzer (1976) provide expressions for the heat capacity of many polymers, each
put in the form

1 1 dCL S S d(,;
¢ = ¢p(298K) + (0 — 298). ¢ = G;(298K) + —2(0 — 298), (47)

where temperature is in degrees Kelvin, and cL(298K) and ¢;(298K) are, respectively, the heat capacities
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Heat capacity at zero pressure for
natural rubber
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Fig. 2. Heat capacity as a function of temperature for fully crystalline and fully amorphous natural rubber at zero average principal
stress.

of the fully amorphous and fully crystalline polymer at 298°K. For natural rubber, the constants are
given as

] dq J
L(298K) = 1930 ———, —P =3474 —— 48
p(298K) Okg_K, 0 - (48)
J dc} J
s _ _P_
G298K) = 1590 1. 5 =477 e (49)

where J in the units refers to Joules (not the volume ratio). Fig. 2 shows the heat capacity as a function
of temperature for the fully amorphous and fully crystalline natural rubber based on the above material
parameters.

At zero average principal stress and zero percent crystallinity (b = 1), the heat capacity at constant
pressure and crystallinity is obtained from Eq. (41) as

ZAO

clpey = —0(8)——|,_;.
Cpelp=1 ( )302([)|b_1

(50)

Equating Eq. (50) and the expression for c:) in Eq. (47), reorganization and integrating to obtain 4,
results in

A [ ! (298K 298%} o1 —0)— 1906 4 5.0 51
olp=1 = —| ¢p( ) — @( n(0) — )_EE + Al + s (51)
L’I

where since it is assumed that A4y[0(¢), b(t)], each one of the material parameters cL(298K), %, fa and
ya may be considered as the values evaluated at » = 1 of more general material functions (material
parameters which are functions of ).

At zero average principal stress and 100 percent crystallinity (b = 0), the heat capacity at constant
pressure and crystallinity is obtained from Eq. (41) as
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Cpelpo = H(I)Jo 82ﬁl db(s) (52)
pclb=0 — . 392(1) b(1)=0 .
For the sake of simplicity, it will be assumed that C, is only a function of 0(¢) and b(¢). This will
allow completion of the integration without the need for further information about the material
response. The result of this integration is

32Cy

GOT(t)M:O' (53)

Cpc |/7:0 = _0([)

Equating Eq. (53) and the expression for T in Eq. (47), reorganization and integrating to obtain C,
results in

c [5298K 298d6;’] 01n(0) — 0) — ~ 5202 4 g 54
olp—0 = —| &p( ) — @( n(0) — )_EE + et + vc. (54)
Again, ¢;(298K), %, fc and yc are the values at » = 0 of more general material parameters which are
each a function of b(¢).
From Eq. (44), one can evaluate the heat content of the fully amorphous polymer using the
expression for A, given in Eq. (51). This results in

dc! 1dc a. dJ
hy = | ¢ (298K —298*’}9 P, [eA - ] D. 5
" [CP( ) ' Tra? Tt Yae AT (55)

Using Eq. (45) and substituting for Cy from Eq. (54) results in an expression for the heat content of
the fully crystallized polymer to be given by
14,

V7 [ * (298K 298dc’§]0
lc = Cp( ) - E + =

2d002+yc+223[0——Jc]+D. (56)
0

A common assumption is to set the heat content of the fully crystalline material equal to zero at the
temperature equal to absolute zero. To this is added the condition that the average principal stress be
zero, and one gets

which yields an expression for the heat content of the fully crystalline material as

des 1dcs Gave | -
he = | ¢ (298K —298”]9 __Pppy Tave [ec _ }
e [CP( ) a0 " 3w T e T (58)

The reader will note that at this point, Ac is fully determined by the constants given in Eq. (49) and in
Negahban (2000).
At the melting temperature, 6,,, the heat of fusion, 4h,,, is given by the relation

ha = he + Ahy,. (59)

Van Krevelen and Hoftyzer (1976) provide information on the heat of fusion for a variety of
polymers at their melting temperature, including that for natural rubber. If the data they provide is
interpreted to represent response at zero average principal stress, one can use Eq. (59) to obtain the
unknown constants in the expression for /4. This results in
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Heat content at zero pressure for
natural rubber
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Fig. 3. Heat content as a function of temperature at zero average principal stress for a fully crystalline and fully amorphous natural
rubber.

D [5298K 1 (298K 298(dcls’ dci’)}e l[dcls’ dﬂ# Ah 60
'a+ D= ) — ¢ ) — 0 a0/l T3l a9 " qp |Vm T A (60)

which gives

dc! dc! :
ha = [4(2981() — 298—1’}0 + 1—”92 iy ave [9% — JA] + |:c;(298K) — ¢)(298K)

a0 2'do 0o L dO

det  de! 1[des  de!
— 298 —P——P>]9m —[—P——P]ez Ahy,. 61
(de a0 tolae @)™t 1)

As reported by Van Krevelen and Hoftyzer (1976), the heat of fusion for natural rubber at its melting
temperature 6,,=309°K is

Ahy = 184338 J/ke. (62)

At this point, the expression for the heat content of the fully amorphous material is also completely
defined by the material parameters given in Eqs. (48) and (62) and the expressions given in Negahban
(2000).

Fig. 3 shows the heat content for both amorphous natural rubber and for fully crystalline natural
rubber as a function of temperature based on using the above equations and the stated material
parameters. Figs. 4 and 5 show, respectively, the pressure dependence of the heat content of amorphous
and fully crystalline natural rubber.

8. Melting temperature and equilibrium crystallinity for natural rubber

The next step is to impose upon the model a fundamental melting temperature and existing
information on the equilibrium degree of crystallinity. Both are imposed through the expression for the
thermodynamic force of crystallinity.

At this point, it will further be assumed that the expression for 4, is identical to that given for Ag|, = ;
in Eq. (51), with the exception of the fact that 5 is replaced by a linear function of b(z) such that



M. Negahban | International Journal of Solids and Structures 37 (2000) 2791-2809

Heat content of amorphous natural
rubber as a function of cave and 0
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Fig. 4. Heat content as a function of temperature and average principal stress for fully amorphous natural rubber.

dp
Ba = Balp=o + d—lfb
and
dc! 1de} dBa
Ay = _[c;(2981<) - 298dé’}[0 In(0) — 0] - 5520% + [ﬁAlb:o + dbb}@ +al

In a similar way it will be assumed that

_ dfic
Bc = Belp=o + ab
and
i des 1dcs dp
_ s p P2 C R
Cyo= —|:cp(298K) - 298@} [() In(0) — 0] - 5@0 + |:/fc|b=o + Eb}G +7c-

Heat content of crystalline natural
rubber as a function of cave and 0
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Fig. 5. Heat content as a function of temperature and average principal stress for a fully crystalline natural rubber.
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This results in the thermodynamic force of crystallization in Eq. (39) to become

S 1

|:5298K 1(298K 298<dc dc)}ele 0+0 1<d6fs’ dcl)(ez 92)
E=1¢ ) — ¢ ) — 0 a0 [01n(0) — 0 + m]+§ TR +

(B = 0+ o+ 092 e o g, [ L L] )

Pa  Pc

where yo—7c has been eliminated using Egs. (57) and (60).

The melting temperature is defined above as the lowest temperature at which the material has no
tendency to crystallize. This condition is forced upon the model by requiring the thermodynamic force
of crystallization for the fully amorphous material to be zero at the melting temperature. Using the
expression for the thermodynamic force of crystallization given in Eq. (67), setting £=0, b = 1, 6,,.=0
and =0, one obtains the following equation

dp 1 . des dc1
(ﬁA L dBa ﬂc)bzlz _%”:cp(298K)—cL(298K)—298(d—0p —@ﬂe In(0,n)

dc; dc 5
+ @—@ 0, + Ahy, (68)

For natural rubber this requires that

s B J
<ﬁA+ ﬁc) :1_3166 K (69)

The equilibrium fraction of amorphous polymer can be obtained from Eq. (67) by setting the force of
crystallization equal to zero and solving for the mass fraction of amorphous material. Letting b, denote
the equilibrium fraction of amorphous material, one obtains

boo(ea Oave) =

N S [ 5(298K) — ¢} (298K) — 298<% - %ﬂ _ln(9) 4 0o = 0}
dB,y  dBc g “ do 4o /1L 0
NEINRE (70)
db db
1(de 1)92 + 0% ( dﬁc> Ahy  owe[ 11
+<@‘@‘ o T\Pafet *T‘o_g‘;]~
This can be reorganized using Eq. (68) to obtain
boo(0 1 : [ 5(298K) — ! (298K 298(dc§ dci’)}
oo(0, Oave) = —m Cp( )—Cp( ) — a0 do
db db (71)

0 O — 0 1<ch )(9 Om)’ 11 ome[ 11
)+ ]+ ala - %) Ahm(@ﬁ)‘?[a‘ﬂ'

Using the data of Leitner (1955) to fit the equilibrium crystallinity to 20% at zero average principal
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Equilibrium crystallinity under
hydrostatic stress
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Fig. 6. Equilibrium crystallinity as a function of temperature for five different values of average principal stress.

stress and at zero degrees centigrade, one obtains

dfs _ dfc J
—PA _TPe .
db db %0 kg — K

(72)

Fig. 6 shows the equilibrium crystallinity of natural rubber as a function of average principal stress
and temperature using Eq. (71). The figure is based on forcing the model to fit the fundamental melting
temperature of 309°K and to have an equilibrium crystallinity of 20% at zero degrees centigrade.
Otherwise, the remainder represents predictions of the proposed model, which suggests about a 9°K rise
in the melting temperature for every 50 MPa of hydrostatic pressure, which compares favorably with the
Clausius—Clapeyron equation that gives an 8.3°K change in melting temperature per 50 MPa rise in
pressure (see Mandelkern, 1964: Eq. 5-1, p. 120) and is consistent with published experimental results
(Magill, 1995). Also, Fig. 6 shows that 100% crystallinity will be obtained at equilibrium if the material
is crystallized at 175°K. At 175°K, rubber is in its glassy state and will not crystallize due to restrictions
on the mobility of the molecules and, as a result, the later statement simply reflects the potential for
obtaining full crystallinity if the rubber could arrive at thermodynamic equilibrium.

Entropy of the rubber can be evaluated from Eq. (38) using the expressions for 4y and C, given in
Eqgs. (64) and (66). This results in

b[5298K | (298K 298(dcls’ dci’)} 0 b(dcf’ dci’)e b
n=- Cp( )—Cp( ) — FTRET] n(0) — FTRET] —b(Ba — Bcp=ot

d d des des d
b <fbc — f;) + [c;(2981<) — 298d€p:|ln(9) + d—é’e — Belpeo — ﬁb— (73)

db
B RXUSR VIS
e pA() dg pCo dg .
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Crystallinity of natural rubber (Wood and Bekkedahl, 1946)
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Fig. 7. Crystallinity during isothermal crystallization as a function of time for seven different temperatures. Comparison between
model and the data of Wood and Bekkedahl (1946).

9. Summary and conclusion

Using elementary thermodynamic material parameters which can be obtained for most polymers, the
material functions 4y and C, have been evaluated for natural rubber. In the process, it is shown how
the elementary material properties such as heat capacity, heat content, and melting temperature can be
defined in the context of a general thermodynamic model, as is used for this study. Byproducts of this
operation are explicit expressions providing the dependence of all parameters on hydrostatic pressure.
For example, it is shown that the model predicts about a nine degree rise in melting temperature for
each 50 MPa rise in hydrostatic pressure. Also, as shown in Fig. 7, a kinetic model can be developed
that fits the experimental results of Wood and Bekkedahl (1946). Even though the experiments of Wood
and Bekkedahl (1946) were conducted on unvulcanized natural rubber, the ability of the current model
to fit the data is an indication of the general strength of this modeling technique.

In the process of evaluating the material functions many assumption were made. Many of these
assumptions can be changed provided one has additional information about the material response. In
this sense, the current article represents an example of how to use the model developed in Negahban
(1997) and its simplification presented in Negahban (2000) to characterize polymer response.
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